
VeriCon: Towards Verifying Controller
Programs in Software-Defined Networks

Thomas Ball and Nikolaj Bjørner
Microsoft Research

{tball,nbjorner}@microsoft.com

Aaron Gember
University of Madison-Wisconsin

agember@cs.wisc.edu

Shachar Itzhaky
Tel Aviv University
shachar@cs.tau.ac.il

Aleksandr Karbyshev
Technische Universität München
aleksandr.karbyshev@in.tum.de

Mooly Sagiv
Tel Aviv University
msagiv@acm.org

Michael Schapira and
Asaf Valadarsky
Hebrew University

{schapiram,asaf.valadarsky}@huji.ac.il

Abstract
Software-defined networking (SDN) is a new paradigm for oper-
ating and managing computer networks. SDN enables logically-
centralized control over network devices through a “controller” soft-
ware that operates independently from the network hardware, and
can be viewed as the network operating system. Network operators
can run both inhouse and third-party SDN programs (often called
applications) on top of the controller, e.g., to specify routing and
access control policies. SDN opens up the possibility of applying for-
mal methods to prove the correctness of computer networks. Indeed,
recently much effort has been invested in applying finite state model
checking to check that SDN programs behave correctly. However,
in general, scaling these methods to large networks is challenging
and, moreover, they cannot guarantee the absence of errors.

We present VeriCon, the first system for verifying that an SDN
program is correct on all admissible topologies and for all possible
(infinite) sequences of network events. VeriCon either confirms the
correctness of the controller program on all admissible network
topologies or outputs a concrete counterexample. VeriCon uses
first-order logic to specify admissible network topologies and de-
sired network-wide invariants, and then implements classical Floyd-
Hoare-Dijkstra deductive verification using Z3. Our preliminary
experience indicates that VeriCon is able to rapidly verify correct-
ness, or identify bugs, for a large repertoire of simple core SDN
programs. VeriCon is compositional, in the sense that it verifies the
correctness of execution of any single network event w.r.t. the speci-
fied invariant, and can thus scale to handle large programs. To relieve
the burden of specifying inductive invariants from the programmer,
VeriCon includes a separate procedure for inferring invariants, which
is shown to be effective on simple controller programs. We view
VeriCon as a first step en route to practical mechanisms for verifying
network-wide invariants of SDN programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9 – 11 2014, Edinburgh, United Kingdom.
Copyright © 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594317

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal methods; D.2.4
[Software Engineering]: Software/Program Verification—Correctness
proofs; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Invariants; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—Mechanical verification

General Terms Languages, Verification

Keywords Software-defined networks, Hoare-style verification

1. Introduction
Software defined networking (SDN) is an emerging architecture for
operating and managing computer networks, fueled by adoption by
major technology companies [11]. SDN allows network adminis-
trators to program a (logically) centralized software-based network
“controller” that maintains a global view of the network rather than
manage tens of thousands of lines of configuration scattered among
thousands of network devices (e.g., routers). By centralizing net-
work control and separating it from network hardware, SDN enables
network administrators to run (in-house and third-party) programs
on top of the controller, e.g., for route computation and to enforce
access control policies, without having to wait for features to be
embedded in router/switch vendors’ proprietary and closed software
environments.

The controller configures the network devices, called “switches”,
through a simple API in the form of a flow table: each flow table
entry contains a set of packet fields to match, and an action to be
taken, such as “send packet out of port X” or “drop packet”. When a
switch receives a packet it seeks a matching flow entry in its table; if
the table has no matching flow entries, the switch sends the packet to
the controller, which can then add a flow entry directing the switch
how to handle similar packets in the future. The controller maintains
a global view of the network by gathering information from the
switches (e.g., traffic flow statistics and switch/link failures) and
can change the flow table in response to changes in the network
and network traffic. The controller effectively plays the role of the
network’s operating system; programs running on top of it (often
called “applications”) can use the controller to specify forwarding
rules, access control policies, etc., without directly interacting with
network hardware or with other SDN programs.

Operating large networks is a complex task that is highly prone
to error. This problem is only expected to be exacerbated as network
configuration shifts from today’s human time scale to event-driven
automated configuration with SDN. Guaranteeing network-wide in-
variants (e.g., enforcing access control) is hence of great importance.
SDN opens up the possibilities of applying formal methods to SDN
programs to prove the correctness of computer networks. Indeed,
much effort has recently been invested in applying finite state model
checking to check that SDN programs behave correctly. However,
generally speaking, finite-state model checking of SDN programs
suffers from two main problems: (1) scaling these methods to large
networks is highly nontrivial; and (2) finite-state model checking
might identify errors, but cannot guarantee the absence of errors.
We present VeriCon, a tool for provably verifying network-wide
invariants of SDN programs at compile time.

VeriCon symbolically reasons about (potentially infinite) net-
work states to verify that network-wide invariants are preserved
for any sequence of “events” (e.g., the controller receives a packet
header from a switch, or a link fails) and on all admissible topolo-
gies, where invariants and topologies are expressed via first-order
logic. VeriCon is sound in the sense that if it outputs “no errors”
then the preservation of the specified invariants is guaranteed. When
verification fails, VeriCon displays a concrete scenario that violates
the invariants, in the form of an admissible topology and an event,
and it is therefore a useful tool for debugging controller programs.
Notice that VeriCon reasons about both the controller and switch
correctness.

We designed a simple imperative programming language, called
Core SDN (CSDN), for writing SDN programs. CSDN is but a
means to an end; we use it to illustrate that Hoare style verification of
SDN programs is feasible in many programming languages. VeriCon
models the semantics of both controller events, such as the receipt
of a packet from a switch at the controller, and switch events, such
as executing a rule entry in a switch’s flow table and forwarding an
incoming packet to a certain port (or dropping it). Thus, sequences
of events in VeriCon capture both controller-to-switch interaction
and switch-to-switch interaction, making it possible to reason about
SDN programs’ behavior for arbitrary sequences of network events
(at both the controller and the switches). In fact, we treat the
network as just a guarded command program where guards model
controller and switch events. This allows us to naturally handle the
non-deterministic aspect of networks where switch events can be
triggered if the switch includes a matching rule in the flow table,
and otherwise controller events occur. Also, these events interact
in a non-trivial way. The handler of controller events can change
the content of the flow table and then a switch event can cause a
violation of an invariant. A premature installation of a flow table rule
can break an invariant if the state of the controller is not correctly
updated after subsequent switch event. VeriCon can catch these
kinds of errors before the program is executed, provided that the
programmer can specify the desired invariants.

States in CSDN consist of relations representing the network
topology and the flow tables of individual switches, and also of
auxiliary relations that maintain the controller’s information about
the global network state. The state — of the controller and switches —
is updated by adding or removing tuples from relations (e.g., the
switches’ flow tables). CSDN was designed in the spirit of the
OpenFlow standard [1].

VeriCon takes as input a CSDN program as well as formulas in
first-order logic that specify constraints on the network topology
and desired safety properties (network-wide invariants). VeriCon
employs the standard weakest preconditions [5] in order to generate
verification condition (VC). The VC is a first order formula which
holds if and only if: (i) the initial network state satisfies the invariant
and (ii) the invariant is inductive, i.e., the execution of arbitrary

controller and switch events maintain the invariant. The semantics
of the controller events is taken from the CSDN program. The
semantics of the switch is dictated by the OpenFlow standard [1].
The soundness of completeness of such approaches is completely
standard (e.g., see [7]).

An automated theorem prover (Z3 [4]) checks the verification
condition, to either verify the correctness of the controller program
or to generate a concrete network topology and event that violate
the safety properties. It is well known that tools like Z3 are not
guaranteed to terminate in general. However, we notice that the
generated VCs for many network protocols belong to a class of
formulas that are easy to verify by SAT solvers.

We show that VeriConis practical for a large repertoire of
controller programs, ranging from simple but well-studied examples,
e.g., MAC-learning switches and firewalls, to simplified versions of
recently proposed SDN-based systems: Resonance [19] for dynamic
access control and Stratos [8] for orchestrating the steering of
traffic through middlebox sequences. VeriCon is compositional,
in the sense that it checks the correctness of each network event
independently against the specified invariants, and so it can scale to
handle complex systems well beyond other approaches, e.g., finite
state model checking, given appropriate inductive invariants.

Organization Section 2 provides an informal overview of VeriCon.
Section 3 shows how admissible topologies and network-wide
invariants in SDNs can be formulated in first-order logic. Section 4
discusses how to generate verification conditions for controller
programs. To simplify exposition, we limit the discussion in this
section to the small core language CSDN. Section 5 presents the
implementation of VeriCon and our experience with verifying SDN
controllers. Section 6 reviews related work.

2. Overview
This section provides an overview of the VeriCon system.

2.1 Programming Controllers
Fig. 1 shows a simple SDN program implementing a stateful firewall,
inspired by [12]. The idea here is that end-hosts in the corporate
domain can send traffic to the outside world but, for security
reasons, traffic from an end-host outside the domain can only enter
the domain if that end-host has previously received traffic from
some end-host within the domain. This is realized as follows. Two
types of hosts are connected to a switch: (i) trusted hosts (within
the organization) via port 1; and (ii) untrusted hosts (outside the
organization) via port 2. Packets from trusted hosts are always
forwarded to untrusted hosts. Packets from untrusted hosts are
forwarded to trusted hosts only if the source host has previously
received a packet from a trusted host. The auxiliary relation tr
records the trusted hosts for each switch. We use bold font to
denote OpenFlow commands. The program is actually executed
in an infinite loop with two type of events: pktIn events that are
annotated with commands, and pktFlow events whose semantics is
determined by the current content of the flow table.

Fig. 2 shows a typical topology and Table 1 depicts a particular
scenario of network events and their effects.

2.2 Correctness Checking
VeriCon receives three inputs: (i) a SDN program, (ii) a first-
order formula describing constraints on the topology, and (iii) a
correctness condition expressed as invariants in first-order logic. It
verifies that for every event executed in an arbitrary topology the
program satisfies the required invariants by means of a theorem
prover. In the firewall example, the requirement is that for every
packet sent from an untrusted host to a trusted host there exists a
packet sent to that untrusted host from some trusted host. This is

rel tr (SW,HO) = {} // an initially empty relation recording trusted hosts, two arguments: switch and host
@while new events occur do {

pktIn(s, src→dst , prt(1))⇒ // a packet from a trusted hosts appeared on the switch s without a forwarding rule
s.forward(src→dst , prt(1)→prt(2)) // forward the packet to untrusted hosts
tr.insert(s, dst) // insert the target of the packet into trusted controller memory
s.install(src→dst , prt(1)→prt(2)) // insert a per-flow rule to forward future packets

@pktFlow(s, src→dst , prt(1))⇒ // a packet from trusted hosts with a forwarding rule
@forward according to the table

pktIn(s, src→dst , prt(2))⇒ // a packet from an untrusted hosts appeared on the switch s
if tr(s, src) then // check if src is trusted on s
s.forward(src→dst , prt(2)→prt(1)) // if yes, forward the packet to trusted hosts
s.install(src→dst , prt(2)→prt(1)) // and insert a per-flow rule to forward future packets

@pktFlow(s, src→dst , prt(2))⇒ // a packet from untrusted hosts with a forwarding rule
@forward according to the table

@}

Figure 1. A simple stateful firewall monitoring the traffic from untrusted hosts connected to prt(2) to trusted hosts connected to prt(1).
Statements beginning with @ are added for expository purposes.

event action new-rule new-trusted
pktIn(s, c→b, prt(2)) none none none
pktIn(s, a→c, prt(1)) s.forward(a→c, prt(1)→prt(2)) 〈s, a→c, prt(1)→prt(2)〉 〈s, c〉
pktIn(s, c→b, prt(2)) s.forward(c→b, prt(2)→prt(1)) 〈s, c→b, prt(2)→prt(1)〉 none
pktFlow(s, c→b, prt(2)→prt(1)) s.forward(c→b, prt(2)→prt(1)) none none

Table 1. A scenario of a packet transmissions for the SDN program shown in Fig. 1 using the topology shown in Fig. 2.

captured by the following safety invariant

I1
def
=

S.sent(Src→Dst , prt(2)→prt(1))⇒ ∃Src′ ∈ HO :
S.sent(Src′→Src, prt(1)→prt(2))

To improve readability, free variables in formulas (such as S and
Src, Dst above) are implicitly universally quantified. S denotes an
arbitrary switch; Src, Dst , and Src′ denote arbitrary hosts. Finally,
S.sent(Src → Dst , I → O) denotes the fact that a packet from
source Src to destination Dst was forwarded from input port I to
output port O of the switch S.

2.2.1 Unbounded Symbolic Topologies
VeriCon, unlike finite-state model checking (e.g., [3]), verifies that
the invariants hold under any admissible network topology of any
size. By default, the admissible topologies are all the possible
network graphs, but the programmer may choose to force a certain
class of admissible topologies; e.g., one can enforce a star shape by
requiring that there exists a switch to which all the other switches
are connected by a link:

∃S ∈ SW : ∀S1, S2 ∈ SW : S1 6= S2 ⇒(
∃I1, I2 ∈ PR : link(S1, I1, I2, S2)

)
⇔ S1 = S ∨ S2 = S

Here link(S1, I1, I2, S2) denotes the fact that port I1 of switch S1

is connected to port I2 of switch S2.
VeriCon first checks that the safety invariant and topology con-

straints are consistent. In the example, I1 can be trivially satisfied
by an empty topology; conjoined with the star constraint, it can be
satisfied by a topology of size 1. Note that we can conjoin different
requirements and let the theorem prover infer a common topology.

VeriCon then continues to check that the invariants are preserved
by executions of arbitrary switch and controller events on an arbi-
trary network subject to the topology constraints. VeriCon provides
a compositional way to check complex code under arbitrary event
sequences. However, this requires the specification of inductive in-

variants1. In the firewall example above, I1, though correct, is not
inductive; VeriCon displays a counterexample for each event that
violates the invariant. For example, VeriCon generated the counterex-
ample shown in Fig. 3 for the switch event (pktFlow). It describes a
configuration in which the switch’s flow table is unconstrained and
permits forwarding from untrusted hosts to trusted ones. In this case,
it is not a bug in the code—this situation cannot occur at runtime,
but I1 is not strong enough to exclude it. Another counterexample,
which VeriCon produces (Fig. 4), corresponds to situations in which
the trusted relation contains superfluous entries when entering a con-
troller event (pktIn). We strengthen I1 to be inductive by adding
the following two safety invariants that exclude the above situations:

I2
def
=

S.ft(Src→Dst , prt(2)→prt(1))⇒
∃Src′ ∈ HO : S.sent(Src′→Src, prt(1)→prt(2))

I3
def
=

tr(S,H)⇒
∃Src ∈ HO : S.sent(Src→H, prt(1)→prt(2))

Safety invariant I2 uses the relation symbol ft to refer to a poten-
tially infinite relation describing the flow tables of the individual
switches. It states that flow table entries only contain forwarding
rules from trusted hosts. I3 states that the controller data structure
tr records the correct hosts. These kind of invariants are common
in many SDN programs.

VeriCon reports that I1 ∧I2 ∧I3 is inductive, and the controller
program is verified. Notice that when VeriCon proves that an
invariant holds, that invariant is guaranteed to hold for an arbitrary
sequence of network events. For example, I1 also guarantees that
packets forwarded by the switch are sent by certified hosts.

Bug Finding VeriCon can identify subtle bugs in an SDN program.
When VeriCon is applied to an incorrect SDN program, it produces
a concrete counterexample in a readable manner. VeriCon shows the
event that violates the safety invariant and the error configuration,

1 An invariant is inductive if it is preserved by executions starting from an
arbitrary state satisfying the invariant.

b

a

e

d

c
1 2

Trusted Untrusted

s

Figure 2. A sample topology for a firewall monitoring the traffic
from untrusted to trusted hosts. s is a switch, a through e are hosts:
a and b are trusted, c, d, and e are untrusted.

1 2

0

3

HO:0
SW:0

src dst s

flow-table

HO:0 HO:0 * *

in out

port(2) port(3)

pktFlow(s, src→dst, in→out)

Figure 3. A flow-table and a packet src→dst that cause I1 to be
violated when a packet flow event is executed by the switch s, as
the packet arrives at input port in.

1 2

0

3

HO:0

tr

SW:0 HO:0

SW:0

flow-table

(empty)

src dst s

pktIn(s, src→dst, prt(2))

Figure 4. A trusted-relation (tr) and a packet src→dst that cause
I1 to be violated when a controller event is executed as the packet
arrives at port 2 of switch s and is forwarded to the controller.

where the latter includes the concrete topology and the symbolic
conditions on packets.

A counter-model generally indicates either an overly-permissive
invariant or a real bug in the program. In Section 5, we show an
example in which VeriCon detects a real bug in an SDN program.

On-line Topology Changes VeriCon handles potential topology
changes by assuming that, between events, the topology can trans-
form into another topology satisfying the specified topology invari-
ants. This means that if the program is proven correct, then this
proof is robust w.r.t. links going up or down during execution.

2.2.2 Inferring Inductive Invariants
In general, writing inductive invariants by hand is very tricky
since the programmer needs to specify the set of states after
an arbitrary sequence of events. Therefore, VeriCon includes a
separate simple utility for inferring invariants using iterated weakest
preconditions [5]. The main idea is to strengthen the goal invariants
by arbitrary executions of controller and switch events. We start
with the goal invariant and perform backward analysis on the
event handler code (including flow events). For example, I2 is the
weakest precondition which guarantees that I1 holds after executing
the semantics of the switch event pktFlow(s, src→ dst , prt(2)).
Also, I3 is the weakest precondition which guarantees that I1
holds after executing the controller command associated with the
pktIn(s, src→dst , prt(2)) event. Therefore, VeriCon can infer the
inductive invariant from the I1 specification. As shown in Section 5,
inductive invariants can often be inferred for simple SDN programs
using few strengthening iterations. However, for more complicated
programs it may be necessary to apply more advanced invariant
inference techniques.

2.3 Limitations
Our current verification methodology is limited in two ways:

• We focus on safety properties. We leave the verification of
liveness properties, e.g., that packets must eventually reach their
destinations, for future research.

• We assume that events are executed atomically, ignoring out-of-
order rule installations. Consistently updating a software-defined
network is an important challenge in SDN (see [22]). We plan
to address this issue in the future by considering interleavings of
rule installations without barriers.

3. Symbolically Modeling SDN Properties with
First-Order Logic

We now show that many interesting properties of software-defined
networks can be naturally expressed in first-order logic. We use
relations to model the network topology, the flow tables of the
switches, the SDN program’s internal state, as well as histories
of transmitted packets. Each of the relations is potentially infinite.
CSDN commands manipulate relations by inserting and removing
tuples from relations. Queries over network states are defined using
first-order formulas.

3.1 Predefined Relations
Table 2 describes the predefined relations supported by VeriCon. In
addition, the programmer also can define her own relation symbols.
The relations link(S,O,H), link(S1, I1, I2, S2), path(S,O,H),
and path(S1, I1, I2, S2) represent the physical network topology.
SDN programs generally do not explicitly manipulate these relations,
other than populating them based on link-level discovery protocol
(LLDP) information reported by SDN switches.

For clarity, a packet header is represented as a pair Src→Dst .
Our implementation supports different packet header fields as
functions PK → Values. The most interesting built-in relation
involving packet headers is S.ft(Src → Dst , I → O), which
represents the switches’ forwarding tables. This relation denotes the
semantics of the switch and not its concrete storage. For example,
the SDN program command s.install(h→∗, i→o) updates switch
s to include a general forwarding rule for all packets from host
h coming from ingress port i to be forwarded to port o. This is
implemented in OpenFlow by installing a general matching rule
based on the source of the packets. The symbolic effect on the ft
relation is to add all the tuples S.ft(Src → Dst , I → O) where
S = s, Src = h, I = i, and O = o (Dst is unconstrained).

Relation Attributes Intended Meaning
link(S,O,H) S ∈ SW,O ∈ PR,H ∈ HO Host H is directly connected to switch S via port O
link(S1, I1, I2, S2) S1 ∈ SW, I1, I2 ∈ PR, S2 ∈ SW Port I1 of switch S1 is directly connected to port I2 of switch S2

path(S,O,H) S ∈ SW,O ∈ PR,H ∈ HO There is a path from S via port O to a host H
path(S1, I1, I2, S2) S1, S2 ∈ SW, I1, I2 ∈ PR There is a path from port I1 of switch S1 to port I2 of switch S2

S.ft(Src→Dst , I→O) S ∈ SW,Src,Dst ∈ HO, I,O ∈ PR Switch S has a rule to forward packets Src→Dst arriving from
port I to port O

S.sent(Src→Dst , I→O) S ∈ SW,Src,Dst ∈ HO, I,O ∈ PR Packet Src→Dst arrived at ingress I is forwarded to egress O
rcvthis(S,Src→Dst , I) S ∈ SW,Src,Dst ∈ HO, I ∈ PR Packet Src→Dst is received at ingress port I

Table 2. Built-in relations describing network states.

The effect is handled in the generated verification condition using
a first-order formula expressing the weakest precondition of this
command by substituting the ft relation symbol. Sending to egress
port O = null models dropping packets.

The history relation S.sent(p, I→O) records packets whose
header is p forwarded by a switch S from ingress port I to egress
port O. This can happen either by executing a forwarding rule at a
switch or by sending a packet to the controller which then instructs
the switch to forward the packet from I to O. This relation records
the history of forwarding and is used for reasoning. For example, it
occurs in the invariant I1 defined in eq (2.2).

Note that “S.r(~x)” is just syntactic sugar for the first-order
formula “r(S, ~x)”, used to enhance readability.

The predicate rcvthis(S, P, I) allows assertions to refer to the
packet currently being handled by the switch or the controller
code. The examples of such assertions include transition invariants,
defined below. For a controller event pktIn(s, p, i) (respectively, for
a switch event pktFlow(s, p, i→ o)), rcvthis(S, P, I) holds if and
only if S = s, P = p and I = i.

3.2 Invariants
Fig. 5 shows the syntax of standard (typed) first-order formulas
which are used to describe invariants of SDN programs and topology
constraints. In the atomic formulas, Rid is either a predefined or a
user-defined relation. For readability, we write atomic formulas
r(S, 〈Src,Dst〉, I, O) as S.r(Src → Dst , I → O), where S
denotes an arbitrary switch, Src denotes a source host, Dst denotes
a destination host, I is an input port, and O is an output port.

VeriCon supports three kinds of invariants:

(i) The topo invariants define the admissible topologies. These are
assumed to hold in the initial state. VeriCon checks that these
invariants are consistent with safety and trans invariants and that
together they form an inductive invariant that is preserved under
the execution of switch and controller events.

(ii) The safety invariants are supposed to hold at the initial state and
be preserved for any execution of switch and controller event
sequence.

(iii) The trans invariants are checked after the execution of every
event. They describe the properties of transitions caused by the
event in a similar way to postconditions in procedures.

VeriCon simplifies the verification task by assuming that both switch
and controller events are executed atomically. In particular, when
the controller executes a sequence of commands the invariant is
checked before and after the whole sequence and not after individual
commands. It is straightforward to check that the invariant holds
after every command. However, this will lead to many false alarms
as the code usually assumes atomicity.

F ::= True true
| Trm = Trm equality
| Rid(Trm∗) atomic formulas
| ∀α : Tid.F universal quantification
| ∃α : Tid.F existential quantification
| ¬F negation
| F ∧ F conjunction
| F ∨ F disjunction

Trm ::= α logical variable
| Fid(Trm) uninterpreted functions

Figure 5. A syntax of first-order formulas.

T Formula Intended Meaning
T1 ¬link(S, I1, I2, S) no self-loops

T2
link(S1, I1, I2, S2)⇒

link(S2, I2, I1, S1)
symmetry of links

T3
rcvthis(S, P, I)⇒

path(S, I, P.src) packets arrive from
reachable hosts

T4 prt(M) = prt(N)⇒M = N injective ports

Table 3. Examples of interesting topology invariants for SDNs.

3.2.1 Topology Invariants
First-order logic can express many topology invariants naturally,
as shown in Table 3. These invariants are crucial for VeriCon to
precisely reason about networks. For example, the invariant T3

asserts that packets cannot be received from disconnected hosts.
Without this invariant the theorem prover may issue false messages.
Notice that some of these invariants may not be relevant or need not
hold for some topologies. The current implementation provides
a library of invariants which can optionally be included in the
controller code.

3.2.2 Safety Invariants
VeriCon permits safety invariants that define the required consis-
tency of network-wide states. VeriCon checks that every event pre-
serves all the topology and safety invariants. In the firewall example,
we check that I1 ∧ I2 ∧ I3 is preserved by the execution of flow
and controller events.

3.2.3 Transition Invariants
VeriCon also permits the programmer to define transition invari-
ants, which describe the effect of executing event handlers. VeriCon
checks that all the transition invariants are satisfied after the execu-
tion of every switch and controller event.

rel connected (SW,PR,HO) = {} // new relation with 3 args
pktIn(s, src→dst , i)⇒ // packet from src into dst

var o : PR // var. for egress ports
connected.insert(s, i, src) // learn a new connection
if connected(s, o, dst) then // if dest. is already known
s.forward(src→dst , i→o) // forward the packet
s.install(src→dst , i→o) // install a new rule

else s.flood(src→dst , i) // flood if dest. is unknown

Figure 6. A simple learning switch controller code

A simple example of a transition invariant is the absence of
“black holes”, i.e., packets are never dropped. This is expressed as

rcvthis(S,Src→Dst , I)⇒ ∃O ∈ PR : S.sent(Src→Dst , I→O)

The latter invariant does not hold in the firewall example since it
drops packets from untrusted hosts. However, the invariant does
hold for the simple learning switch shown in Fig. 6. This SDN
program learns connected hosts as soon as new packets from them
appear. When a packet arrives, it is forwarded to the port to which
the destination host is connected or, if this port is unknown, the
packet is sent via flood to all the ports excluding the input port.

Interestingly, with VeriCon one can even state (and prove) that
the learning switch SDN program correctly forwards packets. One
way to express this using the transition invariant

trans : rcvthis(S,Src→Dst , I) ∧O 6= I ∧ path(S,O,Dst)⇒
S.sent(Src→Dst , I→O)

However, VeriCon reports that this invariant is violated in network
topologies where multiple ports can be used to reach hosts. We can
restrict the topology by adding an extra topology invariant

topo : path(S, I1, H) ∧ path(S, I2, H)⇒ I1 = I2

Alternatively, it is possible to state the correctness of the learning
switch in networks with multiple outgoing ports using the formula
L4 shown in Table 4. Here, O1 quantifies over the existence of
path and O2 denotes the port chosen by the flood command or
via learning. This invariant is a bit complicated since it deals
with situations in which there are multiple ports leading to the
destination host. In fact, it is possible to show that the learning
switch also correctly learns the connections using the invariants
shown in Table 4.

4. Verifying Controller Programs
This section defines the CSDN language, a simple imperative
language for writing SDN programs, with an eye towards making
verification tractable. The only data structures in CSDN are relations,
which model both the internal state of the controller and the flow
tables. CSDN commands can query and update the relations. As
shown later, updates to relations are expressible using Boolean
operations, a fact which greatly simplifies the verification task.
As a result, Z3 is able to precisely reason about many interesting
properties, as discussed in Section 4.3.

4.1 The CSDN Language
Fig. 7 describes the abstract syntax of CSDN. The SDN program first
declares external relations, initializes these relations, and specifies
constraints on the network topology. Unless the programmer restricts
the set of admissible topologies (using the keyword topo), all
topologies are admissible. The programmer can initialize user-
defined relations and specify controller-specific invariants. The built-
in relations sent , recv and ft are initially empty by default. Events
have attributes that include the switch where they occur (denoted by

s), the sending host (src), the receiving host (dst), and the ingress
port at which the packet arrives at the switch (i).

The controller code reacts to events by performing a sequence
of (conditionally executed) commands. The command assume F
instructs the verifier to assume that F holds in the sequel, whereas
the command assert F causes the verifier to produce an error if F
does not hold. The insert and remove commands are used to update
a given relation with a set of tuples. The flood command forwards
a packet to all switch ports except the packet’s ingress port. For
readability, we define an install command as shorthand for updating
the flow table of the relevant switch and a forward command to
encode sending the current packet, i.e.,

S.install(P, I→O)
def
= ft .insert(S, P, I→O)

S.forward(P, I→O)
def
= sent .insert(S, P, I→O)

4.2 From Programs to Formulas
We now show how to convert CSDN programs into first-order for-
mulas, which can be fed into the theorem prover. We use the stan-
dard Dijkstra’s weakest (liberal) precondition calculus, originally
invented for specifying the meaning of guarded commands [5]. The
main idea is to compute a weakest formula in first-order logic that
ensures that execution of a command c leads to the state satisfying
a postcondition Q. Such formula is called the weakest liberal pre-
condition wp[[c]](Q). The formula wp[[c]](Q) can be used to check
the correctness of c for a given precondition P by asserting that
P ⇒ wp[[c]](Q). Alternatively, models of P ∧¬wp[[c]](Q) are coun-
terexample to the fact that Q holds when c is executed on states
satisfying P . Finally, I is an inductive invariant for a command c
if and only if I ⇒ wp[[c]](I). Notice that these rules only apply to
prove the safety of the networks.

Table 5 contains syntax directed rules for computing the weakest
(liberal) preconditions of CSDN commands. These rules compute a
formula representing the largest set of states from which a command
executes without failure, thus defining the axiomatic meaning of
CSDN commands. The first section defines the meaning of atomic
commands. The second section defines the meaning of controller
and switch events. For brevity, we omit the rules for the while-loops
(e.g., see [7]), which assert that (i) the loop invariant initially holds,
(ii) that the loop invariant is preserved by the loop body, and (iii) that
the loop invariant and the negation of program condition imply the
postcondition.

It is interesting to note that destructive updates to relations (inser-
tions and removals) are simply handled using Boolean operations.
An alternative is to use a version of McCarthy [18] store functions
specialized to updating relations in the way Table 5 prescribes. How-
ever, in our case, this just introduces more overhead than savings
because relations are never passed as first-class objects and there
are no nested access patterns, where McCarthy stores are known to
provide a more succinct representation.

Controller events pktIn(s, p, i) are assumed to be triggered
when a packet arrives at a switch and there is no entry in the flow
table for handling this packet. Switch events pktFlow(s, p, i→o)
represent a new packet arriving at a switch and being handled
according to an existing entry in the flow table. Observe that this
existing packet-handling rule can use the output port null to drop
the packet. We will slightly abuse the notation, as flow events are
implicit and do not include commands. We call events and their
commands guarded commands.

Priorities The OpenFlow standard supports priorities that allow
a programmer to install some rules without removing existing
rules. Only the flow rule with the maximal priority is executed. We
implement flow tables with priorities by including an extra column
in ft . Accordingly, the semantics of the flow event from Table 5 is

I Formula Intended Meaning
L1 S.ft(Src→Dst , I→O)⇒ path(S,O,Dst) Correctly learned connections
L2 connected(S, I,H)⇒ path(S, I,H) Consistent SDN program data structure
L3 S.ft(Src→Dst , I→O)⇒ connected(S, I,Src) ∧ connected(S,O,Dst) Consistent learning

L4
rcvthis(S,Src→Dst , I) ∧ (∃O1 ∈ PR : O1 6= I ∧ path(S,O1,Dst))⇒
∃O2 ∈ PR : path(S,O2,Dst) ∧ S.sent(Src→Dst , I→O2)

Guranteed forwarding

Table 4. Invariants for the learning switch. L1, L2, L3 are safety invariants and L4 is a transition invariant.

Ctrl ::= Init∗(Evnt⇒ Cmd)∗ controller
Init ::= rel Rid(Tid∗) declare relation

| rel Rid(Tid∗) = (Pred∗)∗ ..with initialization
| var Id : Tid new variable
| topo Fid : F topology invariant
| inv Fid : F safety invariant
| trans Fid : F transition invariant

Event ::= pktIn (Exp∗) packet-in event
Exp ::= const | Id

Cond ::= True | False boolean values
| Rid (Exp∗) tuple in a relation
| Exp = Exp equality
| ¬Cond negation
| Cond ∧ Cond conjunction
| Cond ∨ Cond disjunction

Var ::= var Id : Tid local variable
Cmd ::= skip do nothing

| Id.flood (Exp∗) flood to all ports
| assume F assume that F holds
| assert F assert that F holds
| Rid.insert (Pred∗) relation insertion
| Rid.remove (Pred∗) relation removal
| if Cond then Cmd∗else Cmd∗ conditional
| while Cond inv F do Cmd while-loop
| Id = Exp variable assignment
| Cmd Cmd sequence
| {Var∗Cmd} block of commands

Pred ::= Exp restrict to values
| Pred ∧ Pred conjunction of preds
| ∗ wildcard

Figure 7. The abstract syntax of CSDN. F is a first-order formula defined in Fig. 5.

wp[[skip]](Q)
def
= Q

wp[[assume F]](Q)
def
= F ⇒ Q

wp[[assert F]](Q)
def
= F ∧Q

wp[[r.insert P]](Q)
def
= Q[r(~x) ∨ [[P]]FO(~x)/r(~x)]

wp[[r.remove P]](Q)
def
= Q[r(~x) ∧ ¬[[P]]FO(~x)/r(~x)]

wp[[s.flood(p, i)]](Q)
def
= Q[S.sent(P, I,O) ∨ (S = s ∧ P = p ∧ I = i ∧O 6= i ∧O 6= null)/S.sent(P, I,O)]

wp[[if b then c1 else c2]](Q)
def
= (b⇒ wp[[c1]](Q)) ∧ (¬b⇒ wp[[(c2]](Q))

wp[[c1; c2]](Q)
def
= wp[[c1]](wp[[c2]](Q))

wp[[pktIn(s, p, i)⇒ c]](Q)
def
= (rcvthis(s, p, i) ∧ ¬∃O : PR. s.ft(p, i→O))⇒ wp[[c]](Q)

wp[[pktFlow(s, p, i, o)⇒ “forward”]](Q)
def
= (rcvthis(s, p, i) ∧ s.ft(p, i→o))⇒ wp[[s.forward(p, i, o)]](Q)

Table 5. Rules for computing weakest (liberal) preconditions for CSDN programs. Q[ψ/ϕ] denotes the substitution of all occurrences of ϕ in
Q by ψ. The meaning of predicates [[P]]FO is a first-order formula over r’s columns defined in Table 6.

[[exp]]FO(t)
def
= exp = t

[[∗]]FO(t)
def
= True

[[P1 ∧ P2]]FO(t)
def
= [[P1]]FO(t) ∧ [[P2]]FO(t)

[[P1, P2, . . . , Pk]]FO(t1, t2, . . . , tk)
def
=
∧k

i=1[[Pi]]FO(ti)

Table 6. Converting predicates into first-order formulas. The mean-
ing of predicates [[P]] is a first-order formula over the columns of
the relation.

modified as

wp[[pktFlow(s, p, i, o)⇒ “forward”]](Q)
def
=

(rcvthis(s, p, i) ∧ ∃α : PRI .maxft(α, s, p, i, o))⇒
wp[[s.forward(p, i, o)]](Q)

with PRI = Nat . Here, predicate maxft(α, s, p, i, o) denotes the
fact that α is the maximal priority for the matching flow rules, i.e.,
s.ft(α, p, i→o) and

∀α′ : PRI , O′ : PR. s.ft(α′, p, i→O′)⇒ α′ ≤ α.

4.3 From Formulas to Theorems and Models
Our evaluation in Section 5 shows that the verification conditions
can be solved by Z3. The invariants we encountered so far were
all restricted to formulas with a quantifier prefix ∀∃. Proving such
invariants could easily be highly intractable and we explain the
apparent ease based on the following observation:

Observation: Instantiation dependencies are shallow. By in-
specting verification conditions from CSDN programs we observed
that the formulas could be proved or disproved using relatively few
instantiations. The reason is that the formulas do not contain oppor-
tunities for pumping. In other words, instantiations do not produce

new opportunities for instantiations. For example, when Skolem-
izing I3 ∧ ¬wp[[c]](I3) we obtain a formula of the form (Skolem
functions have hats, and the transition relation is abstracted as ρ):

tr(S,H)⇒ S.sent(Ŝrc(S,H)→H, prt(1)→prt(2))
∧ ρ(tr, sent , tr′, sent ′)

∧ tr′(Ŝ, Ĥ)

∧ ∀Src ∈ HO : ¬Ŝ.sent ′(Src→Ĥ, prt(1)→prt(2))

The opportunities for instantiating Src is limited to Ŝrc(S,H).

4.4 Strengthening of Invariants
To ease the burden of writing inductive invariants, we implement a
technique of strengthening for state invariants. The idea is to apply
iteratively the weakest precondition operator wp to a given invariant
I . Since the invariants are expressed as arbitrary first-order formulas,
the stabilization checking is expensive in general. Therefore, we
apply wp only finitely many times with the number of iterations
limited by the user. Formally, for an event (a guarded command) e
and a formula φ, we recursively define the n-strengthening by

Str (0)(φ, e) = φ

Str (n+1)(φ, e) = Str (n)(φ, e) ∧ wp[[e]](Str (n)(φ, e)).

Given a set of eventsE, the function Str (n)(φ,E) iteratively applies
Str (n)(φ, e), for all e ∈ E, in some order.

For each state invariant I , we instead try to verify its version
n-strengthened by all events of Prog. All values of n are tried
consequently from 0 to a bound provided by the user until all
invariants are proven. If the tool fails to generate inductive invariants
from the given ones within the bounded number of iterations,
respective counterexamples are returned. In most of our experiments,
n = 1 was sufficient to obtain invariants strong enough to prove
their inductiveness.

5. Preliminary Experience
This section describes our preliminary experience with implement-
ing VeriCon using Z3 and applying it to SDN programs. The pro-
gram code and the invariants for both correct and incorrect programs
are available online 2. The rest of the section is organized as fol-
lows: Section 5.1 describes the actual implementation; Section 5.2
describes our experience applying VeriCon to correct programs; and
Section 5.3 describes our experience applying VeriCon to incorrect
programs and to programs with incorrect invariants.

All experiments were performed on an Intel i5 1.3GHz, 4GB,
MacBook Air running OSX 10.8.5.

5.1 Implementation
We implemented the pseudocode shown in Fig. 8 in Python using
the Z3 Python API. We use PLY (Python Lex-Yacc) to parse
CSDN programs annotated with: (i) topology invariants; (ii) safety
invariants; and (iii) transition invariants. The VC generator uses the
rules of Table 5 to compute verification conditions.

The tool accepts as input a CSDN program Prog and a number
nmax limiting the depth of invariant strengthening (default value is
0). First, we check that the topology constraints are consistent with
the initial states of the network. Then, for each value n from 0 to
a nmax we proceed as follows. We strengthen the safety invariants
with n applications of wp for all events of Prog. We check that
the strengthened safety invariants hold for the initial states under
the topological assumptions. We then check that the topology, the
strengthened safety invariants, and the transition invariants are
preserved by the execution of arbitrary events executed on every

2 http://www.cs.tau.ac.il/~shachar

VeriCon(Prog, nmax)
Let Topo be the set of topology invariants in Prog
Let Inv be the set of safety invariants in Prog
Let Trans be the set of transition invariants in Prog
Let Event be the set of events of Prog
Let Init be the formula describing the initial states of Prog
if not SAT(Init ∧ (

∧
Topo))

then return topology and initial conditions are incompatible
for n = 0 to nmax do

Let Inv# = {Str (n)(I,Event) | I ∈ Inv} // strengthened invs

Let Ind def
=
∧
(Inv# ∪ Topo) // candidate inductive formula

if there exists I ∈ Inv# s.t. SAT(Init ∧ (
∧

Topo) ∧ ¬I)
then report I does not hold on initial states

if there exist ev ∈ Event and I ∈ Inv# ∪ Topo ∪ Trans
s.t. SAT(Ind ∧ ¬wp[[ev]](I))
then report I is not provable on event ev using Ind

else return all proved

Figure 8. A pseudcode for the VeriCon tool.

admissible state. If this is not the case, we convert the model
generated by Z3 into a readable counterexample in a graphical
form, by means of the GraphViz library.

5.2 Verification Examples
Table 7 shows the running times of VeriCon on correct SDN
programs. It was natural to express safety invariants using first-order
logic. The table provides the number of goal safety and transition
invariants that we verified, e.g., consistency of controller structures
and that all the flows satisfy the intended access policy. Additionally,
it shows the number of auxiliary invariants that make the goal
invariants inductive. In most cases, the auxiliary invariants can be
inferred automatically by the tool using one strengthening iteration.
The only case in which one iteration did not suffice is the Resonance
example.

5.2.1 A Stateless Firewall
Fig. 9 describes a firewall with the same functionality as the stateful
firewall presented in Fig. 1, except it requires fewer interactions with
the SDN program (via controller events), making it more scalable.
The main idea is that the SDN program uses the power of OpenFlow
to simultaneously install two rules at the switch for source and target
packets.

5.2.2 A Firewall with Migration
One of the interesting issues in network management is coping
with host migration. Fig. 10 shows a firewall implementation that
supports migration of trusted hosts. We say that a host is trusted if it
either sent/received (on some switch) a message through/from port
1. Thus, when a trusted host migrates to a new switch, the controller
will remember it was trusted before and will allow communication
from either port.

5.2.3 Network Authentication with Learning
The CSDN program in Fig. 11 is inspired by the code in Reso-
nance [19]. It presents a composition of a learning switch with
authentication. In general, composing two network protocols is hard.
However, the code is written in a way that enables verification of
the composed program with respect to many desired properties. Our
approach allows us to verify all the usual properties of a learning
switch, as well as the consistency of flow tables with the access
directory relation maintained by the controller, and that all packet
flows satisfy the intended access policy.

Program Description LOC Rel Inv VC Time
TOT MAX goal aux auto # ∀

Firewall Simple stateful firewall, Fig. 1. 8 3 1 1 2 2 998 24 0.12s
StatellessFirewall Simple stateless firewall, Fig. 9. 4 3 0 1 1 1 446 12 0.06s
FirewallMigration Firewall with migrating hosts, Fig. 10. 9 4 1 1 2 2 1186 36 0.16s
Learning Simple learning switch, Fig. 6 8 7 1 2 3 3 1251 18 0.16s
Auth Authentication on the network with a learn-

ing controller switch, Section 5.2.3
15 14 4 6 3 3 2284 23 0.21s

Resonance Learning switch with authentication
from [19], Section 5.2.4.

93 92 16 5 3 0 6319 24 0.21s

Stratos Forwarding traffic through a sequence of
middleboxes [8, 21], Section 5.2.5

29 28 4 3 0 0 1493 16 0.09s

Table 7. Running times for VeriCon on correct SDN controller programs. LOC — the number of code lines where MAX is the maximal
number of lines per event and TOT is the total number. Rel — the number of user provided relations in the controller code. Inv — specification
safety and transition invariants: the number of goal invariants, the number of auxiliary invariants that make goal invariants inductive, and the
number of auxiliary invariants automatically inferred by the tool, respectively. VC — the tool generated verification conditions: # — total
number of sub-formulas, ∀— quantifier nesting. Time — the running times for Z3.

pktIn(s, src→dst , prt(1))⇒ // packet from a trusted host
s.forward(src→dst , prt(1)→prt(2)) // forward the packet to untrusted hosts
s.install(∗→dst , prt(1)→prt(2)) // insert a rule to forward future packets targeted at dst
s.install(dst→∗, prt(2)→prt(1)) // insert a rule to forward future packets coming from dst

Figure 9. A simple stateless firewall monitoring the traffic from untrusted to trusted hosts.

rel tr(HO) = {} // declare a relation of trusted hosts (initially empty)
pktIn(s, src→dst , prt(1))⇒ // packet from a trusted host
s.forward(src→dst , prt(1)→prt(2)) // forward the packet to untrusted hosts
tr.insert(dst) // insert dst into trusted controller memory
tr.insert(src) // insert src into trusted controller memory
s.install(src→dst , prt(1)→prt(2)) // insert a per-flow rule to forward future packets

pktIn(s, src→dst , prt(2))⇒ // packet from a presumably untrusted host
if tr(src) then
s.forward(src→dst , prt(2)→prt(1)) // forward the packet to trusted hosts
s.install(src→dst , prt(2)→prt(1)) // insert a per-flow rule to forward future packets

Figure 10. A simple stateful firewall monitoring the traffic from untrusted to trusted hosts with migrating hosts.

var authServ : HO // a designated host is an authentication server
rel auth(HO) = {authServ} // declare a relation of authenticated hosts (initially, contains authServ only)
rel connected(SW,PR,HO) = {} // declare a relation with three arguments to store learned connections
pktIn(s, src→dst , i)⇒ // unknown packets

connected.insert(s, i, src) // learn a new connection
if src = authServ then // received a message from the authentication server

auth.insert(dst) // destination is now authenticated
if auth(src) ∧ auth(dst) then // got a packet from an authenticated host to an authenticated host

var o : PR // a local variable for egress port
if connected(s, o, dst) then // destination of the packet is already learned
s.forward(src→dst , i→o) // forward the packet
s.install(src→dst , i→o) // install a new rule

else s.flood(src→dst , i) // otherwise flood the packet
else // the sender is not authenticated (hence, it is not authServ)

if dst = authServ then // the sender is a “normal” host trying to pass the authentication process
s.flood(src→dst , i) // flood the packet

Figure 11. A learning switch controller code with authentication.

5.2.4 The Resonance Example
We implemented a simplified version of Resonance [19], an access
control approach for host authentication in enterprises. Unlike the
original work, we do not model redirection of the web-traffic.

In Resonance, a host could be in one of four states: (i) Regis-
tered, (ii) Authenticated, (iii) Operational, or (iv) Quarantined. For
each state there are dedicated management servers, and a host is
only allowed to communicate with the servers responsible for its
current state. Once a host is marked as operational, we allow it to
communicate with other operational hosts.

Transition between host states is controlled by the network
management servers, which notify the controller on changes in
the authentication procedure. The host becomes authenticated if the
authentication servers approve its registration, and operational when
it gets scanned, by some scanning server, and is found to be free of
vulnerabilities. As the scanning servers perform random scans on
hosts, a host may become quarantined at any given time (if it was
authenticated before).

The key invariants we verified are (1) the installed flow rules
satisfy the access policy, and (2) all packet flows in the network
respect the policy, i.e., a packet is dropped if and only if it violates
the policy.

5.2.5 The Middlebox Composition Example
We implemented a simple application to forward traffic through a
sequence of middleboxes, similar to the traffic steering performed by
Stratos [8] and SIMPLE [21]. However, unlike these more advanced
frameworks, our implementation does not handle middleboxes that
modify packet headers or terminate connections, nor does our
application perform any weighted selection of middlebox instances.
Furthermore, we reactively install rules for each middlebox when
the first packet of each flow (where a flow is defined by a pair
of source and destination IP addresses) is emitted by the previous
middlebox in the sequence. Currently, we have only considered a
simple case of one switch in the network. We have verified that
the flow table is consistent with the specification of Stratos’ chains
which implies that (i) all packets of a flow traverse an instance of
each middlebox in the sequence, and (ii) all packets of a flow (in
both the forward and backward directions) traverse the same set of
instances throughout the lifetime of the flow.

5.3 Buggy Examples
We also applied the tool to erroneous programs and to programs
with incorrect assertions. The results, including run-time statistics,
formula sizes, and topology sizes, are reported in Table 8.

A simple kind of bug which can occur in the learning switch
(Program Learning-Nosend) is when the SDN program forgets
to send a message when the destination is known, i.e., the send
command is omitted. VeriCon detects that the controller event
violates theL4 transition invariant and generates the counterexample
shown in Fig. 12.

Another type of bug that can occur in SDN programs is that
the data structure of the SDN program is inconsistent with the
forwarding tables of the switches. For example, in program Auth-
NoFlowRemoval, we enhanced the network authentication controller
with the ability to remove hosts. VeriCon uncovered a bug of a
pktIn event violating the authentication protocol. This bug occurred
because the forwarding rules were not removed from the switch
forwarding tables, rendering re-authentication impossible.

6. Related Work
The past few years have witnessed a surge of interest in SDNs. We
now discuss the work most relevant to ours along these lines.

1 2

0

HO:0

connected

(empty)

SW:0

flow-table

(empty)

src dst s

in out

port(0)

pktIn(s, src→dst, in)

Figure 12. A counterexample which shows a scenario where the
programmer forgot the line forward(. . .) of Fig. 6, causing a black
hole — a packet may be lost.

Language abstractions. [6, 25] introduce abstractions for pro-
gramming controllers in order to simplify the task of programming
controllers. [10] shows that the compiler from a high-level language,
called NetCore, to OpenFlow generates semantically equivalent
code. [20] defines a nice declarative language to ease the task of
programming and verifying SDN programs. NetKAT [2] presents
an equational calculus for imperative, finite state, SDN programs.
Declarative programming is also successfully used for updating
multi-tenant networks [16].

In contrast, our focus is on the orthogonal problem of verifying
the safety of infinite state SDN programs. The ultimate goal is to
verify SDN programs in stylized Java or Python, but we focus on
a imperative language like CSDN which captures the essence of
imperative SDN programming. In the future it is worthwhile to apply
VeriCon to declarative programs.

Finite-state model checking of SDN programs. NICE [3] was
the first system to use finite-state model checking to verify the
correctness of SDN controllers. The SDN program is modeled as a
state-transition system with events similar to those in VeriCon. The
concrete network topology is also explicitly modeled. Finite state
model checking has many advantages over Hoare style verification:
it does not require inductive invariants, and it can employ simpler
verification technology. It can be easily applied to arbitrary programs.
However, it is unsound in the sense that it can never prove the
absence of errors in the infinite state SDN program. Also, it is
hard to scale finite state model checking to realistic networks. In
contrast, we use first-order logic to model the admissible topology
and network-wide invariants. Consequently, VeriCon is able to verify
the absence of errors and can also potentially handle huge topologies.
We note, however, that VeriCon relies on user-provided invariants
and a first-order (potentially non-terminating) theorem prover. Our
preliminary experience with Z3 is fairly positive.

Finite-state model checking has also been applied to verify SDN
programs on large networks [23]. Two examples, the learning switch
and the stateful firewall from this work, use manual abstractions.
Our results establish that verification with VeriCon (with infinite
states) is orders of magnitude faster than the approach in [23] (0.13s
vs. 68352s for the finite-state abstraction).

Verificare [24] also uses finite state CTL model checking. The
FlowLog [20] system also employs finite-state model checking by
limiting the number of packets sent. It also shows that for some
specifications this bound suffices to obtain sound results.

In [17], NICE was extended to perform concolic testing [9] and
thus reduce the number of missed bugs.

Checking invariants by analyzing snapshots of the network.
[14] suggests a novel method for checking certain network proper-

Benchmark Description VC CE size Time
∀ # H # SW

Auth-NoFlowRemoval Tried to add the ability to un-authenticate hosts, but
forgot to remove hosts from the flow table.

2317 19 3 2 0.18s

Firewall-ForgotConsistency Forgot part of the flow consistency invariant. 969 24 5 3 0.11s
Firewall-ForgotPortCheck Forgot to check if trusted on events from port 2. 976 24 6 4 0.13s
Firewall-ForgotTrustedInvariant Forgot to add an invariant defining what is a trusted

host.
616 16 6 4 0.09s

Learning-NoSend Forgot to forward the packets. 1248 18 1 1 0.15s
Resonance-StatesNotMutuallyExclusive Forgot to add an invariant defining that states must be

mutually exclusive.
4440 17 11 4 0.19s

StatelessFireWall-AllowAll2to1Traffic Added a flow allowing all traffic from port 2 to 1. 444 12 4 2 0.07s

Table 8. Detection of several kinds of bugs. VC — the tool generated verification conditions: # — total number of sub-formulas, ∀ —
quantifier nesting. CE size — sizes of the generated counterexamples: #H — number of hosts, #SW — number of switches. Time — the
running times for Z3.

ties by analyzing packet headers. As with the above schemes, the
approach described in [14] can establish the existence of bugs but
not their absence.

Dynamically checking SDN programs. [13, 15] show how to
monitor the correctness of certain properties of SDN programs
in real time. The main challenge is to guarantee that this can be
accomplished without harming network performance. VeriCon runs
at compile-time, and so it verifies correctness or, alternatively,
exhibits errors before the code is actually executed. We view
controller code verification ala VeriCon and dynamic checking as in
[13, 15] as two complementary approaches.

7. Conclusion
We presented VeriCon, the first verification tool for (infinite-state)
SDN programs. VeriCon reflects two fundamental choices: (i) ex-
press controller programs as imperative event-driven programs that
manipulate relations; and (ii) express network-wide invariants as
first-order logic formulas. From a verification perspective, these two
choices fit together well, since they guarantee that the generated
verification conditions are simple enough to be expressible in a weak
form of first-order logic, which enables complete verification via
SMT solvers. Indeed, our results establish that Z3 is able to rapidly
verify network-wide invariants of interesting controller programs
or, alternatively, to quickly compute a concrete counterexample.
VeriCon’s encouraging ability to prove the functional correctness
of controller programs of interest motivates further research along
these lines.

Acknowledgments
We thank Ras Bodik, Ahmed Bouajjani, Nate Foster, Oded Padon,
Brandon Heller, Ori Lahav, Aurojit Panda, Hossein Hojjat, Peyman
Kazemian, Shriram Krishnamurthi, Teemu Koponen, Ratul Mahajan,
Tim Nelson, Mark Reitblatt, Vyas Sekar and Sharon Shoham, for
their insightful comments on earlier versions of this paper. The
research of Itzhaky, and Sagiv has received funding from the
European Research Council under the European Union’s Seventh
Framework Program (FP7/2007–2013) / ERC grant agreement
n° [321174-VSSC]. The research of Karbyshev was funded by
Technical University of Munich. Karbyshev thanks Prof. Sagiv for
inviting him to visit Tel Aviv University. Part of this work was done
while Sagiv was visiting Microsoft Research.

References
[1] OpenFlow Switch Specification, Oct. 2013. Version 1.4.0.
[2] ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B., KOZEN,

D., SCHLESINGER, C., AND WALKER, D. NetKAT: Semantic
foundations for networks. In POPL (2014), S. Jagannathan and
P. Sewell, Eds., ACM, pp. 113–126.

[3] CANINI, M., VENZANO, D., PERES, P., KOSTIC, D., AND REXFORD,
J. A NICE Way to Test OpenFlow Applications. In NSDI (2012).

[4] DE MOURA, L. M., AND BJØRNER, N. Z3: An Efficient SMT Solver.
In TACAS (2008), C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963 of
Lecture Notes in Computer Science, Springer, pp. 337–340.

[5] DIJKSTRA, E. W. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM 18, 8 (1975), 453–457.

[6] FOSTER, N., GUHA, A., REITBLATT, M., STORY, A., FREEDMAN,
M. J., KATTA, N. P., MONSANTO, C., REICH, J., REXFORD, J.,
SCHLESINGER, C., WALKER, D., AND HARRISON, R. Languages
for software-defined networks. IEEE Communications Magazine 51, 2
(2013), 128–134.

[7] FRADE, M., AND PINTO, J. Verification conditions for source-level
imperative programs. Computer Science Review 5, 3 (2011), 252–277.

[8] GEMBER, A., KRISHNAMURTHY, A., JOHN, S. S., GRANDL, R.,
GAO, X., ANAND, A., BENSON, T., AKELLA, A., AND SEKAR, V.
Stratos: A Network-Aware Orchestration Layer for Middleboxes in the
Cloud. Tech. Rep. arXiv:1305.0209, 2013.

[9] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: directed
automated random testing. In PLDI (2005), pp. 213–223.

[10] GUHA, A., REITBLATT, M., AND FOSTER, N. Machine-verified
network controllers. In PLDI (2013), pp. 483–494.

[11] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI, L.,
SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU, M.,
ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT, A. B4:
Experience with a Globally-deployed Software Defined WAN. In
ACM SIGCOMM (2013), pp. 3–14.

[12] KATTA, N. P., REXFORD, J., AND WALKER, D. Logic programming
for software-defined networks. In ACM SIGPLAN Workshop on Cross-
model Language Design and Implementation (Sept. 2012).

[13] KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G., MCKEOWN,
N., AND WHYTE, S. Real Time Network Policy Checking using
Header Space Analysis. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13) (2013).

[14] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header Space
Analysis: Static Checking For Networks. In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’12) (2012).

[15] KHURSHID, A., ZHOU, W., CAESAR, M., AND GODFREY, B. Veri-
flow: verifying network-wide invariants in real time. Computer Com-
munication Review 42, 4 (2012), 467–472.

[16] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M., CHANDA,
A., FULTON, B., GANICHEV, I., GROSS, J., GUDE, N., INGRAM, P.,

JACKSON, E., LAMBETH, A., LENGLET, R., LI, S.-H., PADMANAB-
HAN, A., PETTIT, J., PFAFF, B., RAMANATHAN, R., SHENKER, S.,
SHIEH, A., STRIBLING, J., THAKKAR, P., WENDLANDT, D., YIP,
A., AND ZHANG, R. Network virtualization in multi-tenant datacen-
ters. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’14) (2014).

[17] KUZNIAR, M., PERESINI, P., CANINI, M., VENZANO, D., AND
KOSTIC, D. A SOFT Way for OpenFlow Switch Interoperability
Testing. In CoNEXT (2012), pp. 265–276.

[18] MCCARTHY, J. Towards a mathematical science of computation. In
IFIP Congress (1962), pp. 21–28.

[19] NAYAK, A. K., REIMERS, A., FEAMSTER, N., AND CLARK, R.
Resonance: Dynamic Access Control for Enterprise Networks. In
Proceedings of the 1st ACM Workshop on Research on Enterprise
Networking (WREN ’09) (2009), pp. 11–18.

[20] NELSON, T., FERGUSON, A. D., SCHEER, M. J. G., AND KRISH-
NAMURTHI, S. A balance of power: Expressive, analyzable controller
programming. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14) (2014).

[21] QAZI, Z. A., TU, C.-C., MIAO, R., SEKAR, V., AND YU, M.
SIMPLE-fying Middlebox Policy Enforcement Using SDN. In ACM
SIGCOMM (2013), pp. 27–38.

[22] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER, C., AND
WALKER, D. Abstractions for network update. In ACM SIGCOMM
(2012), pp. 323–334.

[23] SETHI, D., NARAYANA, S., AND MALIK, S. Abstractions for model
checking sdn controllers. In FMCAD (2013).

[24] SKOWYRA, R., LAPETS, A., BESTAVROS, A., AND KFOURY, A. A
verification platform for sdn-enabled applications. In HiCoNS (2013).

[25] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B., AND HUDAK, P.
Maple: simplifying SDN programming using algorithmic policies. In
ACM SIGCOMM (2013), pp. 87–98.

